NostrTrust Trust Scoring System Draft

🧱 NostrTrust Trust Scoring System Draft (Model V0.2)

Version: V0.2
📅 Date: May 18, 2025
🧭 Objective: To establish a decentralized trust scoring system driven by high-quality interactions for members of the Nostr community, including developers and content creators.


🔁 Overview of Key Rules

This version introduces a stricter mechanism to ensure that only high-trust users (T Score ≥ 1000) can influence others’ scores through their actions. This helps maintain content quality and prevents abuse from low-reputation accounts.

✅ Users with T Score ≥ 1000 Can Earn Points by Posting Content

Action Type Weight Conditions
Post Original Content +10 points/post Content length ≥ 50 characters, not duplicated
Receive Likes from High-Trust Users +2 points/like The liker must have a T Score ≥ 1000
Receive Comments from High-Trust Users +3 points/comment Each comment counts once, commenter must have a T Score ≥ 1000
Get Shared by High-Trust Users +5 points/share Both the sharer and the shared user must have a T Score ≥ 1000

💡 Posts from new users do not contribute to score growth but serve as discovery and interaction opportunities.


❌ Penalties for Spam or Misconduct

All users, including those with high scores, will face penalties if they engage in spam or misconduct:

Action Type Penalty Points Conditions
Posting Advertisements -20 points/ad Includes external promotion links without context
Duplicate Content -10 points/post Same content posted multiple times
Reported (Verified) -30 points/report Verified through DVM or community arbitration
Malicious Volume Boosting -50 points/incident Such as posting low-quality content rapidly
Sensitive Content -50 to -100 points Including harassment, discrimination, illegal information, etc.

⚠️ If a user’s T Score drops below 1000 due to penalties, they will no longer receive points for posting until they recover above 1000 points.


🧮 Example Scenarios

Scenario One: A High-Trust User Posts Normally

  • User A has a T Score of 2000
  • Posts an original piece → +10 points
  • Receives a like from a user with a T Score of 1200 → +2 points
  • Receives a comment from a user with a T Score of 900 → No points
  • Receives another comment from a user with a T Score of 1500 → +3 points
  • Gets shared by a user with a T Score of 1000 → +5 points
    ✅ Total points earned this time: +20 points

Scenario Two: A High-Trust User Posts Spam

  • User B has a T Score of 1500
  • Posts an obvious advertisement → Gets reported and verified → -30 points
  • User C, with a T Score of 10,000, likes this content → Does not add points (because the content is marked as spam)

🛠 Implementation Suggestions

1. Content Classification Tagging System (AI-Assisted)

Use lightweight NLP models to classify each piece of content:

  • ad (advertisement)
  • spam (spam)
  • duplicate (duplicate)
  • sensitive (sensitive)
  • normal (normal)

Tags are automatically analyzed by DVM and recorded as kind=10002 events.

2. Reporting Process Loop Design

User reports → Recorded as kind=10003 → DVM triggers preliminary assessment → If more than 3 reports → Submitted to DAO quick vote → Approved after review → Deduct points

3. Point Change Notification System

All point changes should be notified to the user via Nostr Event (such as kind=10001), and displayed in detail on the client side.


📋 Initial Trust Setup

User Type Initial T Score Source Description
fiatjaf (Founder) 10,000 Creator of the protocol
Core Developers 5,000 - 8,000 Contributed key code, tools, clients
Active Contributors 1,000 - 4,000 Long-term active contributors with content/project contributions
New Users 0 No initial trust, must build up through endorsements from others

✅ All initial trusted users’ T Scores are certified by DVM or DAO multisig and recorded as kind=10000 events.


✅ Summary (V0.2 Update Highlights)

In this version, we introduced the following key mechanisms:

  • Only high-trust users (T Score ≥ 1000) can give points via likes, comments, and shares
  • The shared content owner must also be a high-trust user to receive share points
  • Encourages high-quality content creation
  • Prevents low-reputation users from affecting score fairness
  • Strengthened detection and penalty mechanisms for spam content

🧱 NostrTrust 信任积分体系初稿(模型 V0.2)

版本号:V0.2
📅 初稿日期:2025年5月18日
🧭 目标:构建一个以高质量互动驱动的去中心化信任评分系统,适用于 Nostr 社区成员、开发者与内容创作者。


🔁 新增规则说明

✅ 高分用户发帖可获得积分(激励优质内容)

T Score ≥ 1000 的用户可以发布原创内容来获取积分:

行为类型 权重 条件
发布原创帖子 +10 分/篇 内容长度≥50字,非重复
被高分用户(T Score ≥ 1000)点赞 +2 分/次 点赞者必须有至少 1000 分
被高分用户(T Score ≥ 1000)评论 +3 分/次 每条评论计一次,评论者必须有至少 1000 分
被高分用户(T Score ≥ 1000)转发 +5 分/次 转发者和被转发者都必须有至少 1000 分

💡 注:新用户发布的内容不计入积分增长,仅用于被发现和互动。


❌ 垃圾内容或不良行为会被扣分(反滥用机制)

所有用户(包括高分用户)若发布以下类型内容,将触发自动或人工审核,并扣除相应积分:

行为类型 扣分 条件
垃圾广告帖 -20 分/条 包含外部推广链接且无上下文
重复内容 -10 分/条 同一内容多次发布
被举报(经核实) -30 分/次 经 DVM 或社区仲裁确认违规
恶意刷量 -50 分/次 如短时间内大量发布低质内容
敏感内容 -50~-100 分 包括骚扰、歧视、违法信息等

⚠️ 如果用户 T Score 因扣分降至 1000 分以下,其后续发帖不再获得主动积分,直到重新恢复至 1000 分以上。


🧮 示例场景

场景一:高分用户正常发帖

  • 用户 A,T Score = 2000
  • 发布一篇原创内容 → +10 分
  • 被 T Score 为 1200 的用户点赞 → +2 分
  • 被 T Score 为 900 的用户评论 → 不得分
  • 被 T Score 为 1500 的用户评论 → +3 分
  • 被 T Score 为 1000 的用户转发 → +5 分
    ✅ 总计本次发帖获得:+20 分

场景二:高分用户发垃圾帖

  • 用户 B,T Score = 1500
  • 发布一条明显广告帖 → 被举报并核实 → -30 分
  • 用户 C,T Score = 10000 → 点赞该内容 → 不再加分(因内容已被标记为垃圾)

🛠 实现建议

1. 内容分类标签系统(AI 辅助)

使用轻量级 NLP 模型对每篇内容进行分类打标签:

  • ad(广告)
  • spam(垃圾)
  • duplicate(重复)
  • sensitive(敏感)
  • normal(正常)

标签由 DVM 自动分析并记录为 kind=10002 的事件。

2. 举报流程闭环设计

用户举报 → 记录到 kind=10003 → DVM 触发初步评估 → 若超过 3 次举报 → 提交 DAO 快速投票 → 审核通过后 → 扣除积分

3. 积分变动通知系统

所有积分变动应通过 Nostr Event 通知用户本人(如 kind=10001),并在客户端展示积分变化详情。


📋 初始信任设定

用户类型 初始 T Score 来源说明
fiatjaf(创始人) 10,000 协议创建者
核心开发者 5,000 - 8,000 贡献关键代码、工具、客户端
活跃贡献者 1,000 - 4,000 长期活跃、内容/项目贡献者
新用户 0 无初始信任,需通过他人背书建立积分

✅ 所有初始可信用户的 T Score 由 DVM 或 DAO 多签认证后写入链上事件(kind=10000)。


✅ 小结(V0.2 更新重点)

在本版本中,我们新增了以下关键机制:

  • 只有来自高分用户(T Score ≥ 1000)的点赞、评论和转发才能给接收者增加积分
  • 被转发人也必须是高分用户(T Score ≥ 1000)才能获得转发积分
  • 继续鼓励优质内容输出
  • 防止低质量互动影响积分公平性
  • 强化垃圾内容识别与惩罚机制

No comments yet.