NostrTrust Trust Scoring System Draft
- 🧱 NostrTrust Trust Scoring System Draft (Model V0.2)
- 🧱 NostrTrust 信任积分体系初稿(模型 V0.2)
🧱 NostrTrust Trust Scoring System Draft (Model V0.2)
✨ Version: V0.2
📅 Date: May 18, 2025
🧭 Objective: To establish a decentralized trust scoring system driven by high-quality interactions for members of the Nostr community, including developers and content creators.
🔁 Overview of Key Rules
This version introduces a stricter mechanism to ensure that only high-trust users (T Score ≥ 1000) can influence others’ scores through their actions. This helps maintain content quality and prevents abuse from low-reputation accounts.
✅ Users with T Score ≥ 1000 Can Earn Points by Posting Content
| Action Type | Weight | Conditions |
|---|---|---|
| Post Original Content | +10 points/post | Content length ≥ 50 characters, not duplicated |
| Receive Likes from High-Trust Users | +2 points/like | The liker must have a T Score ≥ 1000 |
| Receive Comments from High-Trust Users | +3 points/comment | Each comment counts once, commenter must have a T Score ≥ 1000 |
| Get Shared by High-Trust Users | +5 points/share | Both the sharer and the shared user must have a T Score ≥ 1000 |
💡 Posts from new users do not contribute to score growth but serve as discovery and interaction opportunities.
❌ Penalties for Spam or Misconduct
All users, including those with high scores, will face penalties if they engage in spam or misconduct:
| Action Type | Penalty Points | Conditions |
|---|---|---|
| Posting Advertisements | -20 points/ad | Includes external promotion links without context |
| Duplicate Content | -10 points/post | Same content posted multiple times |
| Reported (Verified) | -30 points/report | Verified through DVM or community arbitration |
| Malicious Volume Boosting | -50 points/incident | Such as posting low-quality content rapidly |
| Sensitive Content | -50 to -100 points | Including harassment, discrimination, illegal information, etc. |
⚠️ If a user’s T Score drops below 1000 due to penalties, they will no longer receive points for posting until they recover above 1000 points.
🧮 Example Scenarios
Scenario One: A High-Trust User Posts Normally
- User A has a T Score of 2000
- Posts an original piece → +10 points
- Receives a like from a user with a T Score of 1200 → +2 points
- Receives a comment from a user with a T Score of 900 → No points
- Receives another comment from a user with a T Score of 1500 → +3 points
- Gets shared by a user with a T Score of 1000 → +5 points
✅ Total points earned this time: +20 points
Scenario Two: A High-Trust User Posts Spam
- User B has a T Score of 1500
- Posts an obvious advertisement → Gets reported and verified → -30 points
- User C, with a T Score of 10,000, likes this content → Does not add points (because the content is marked as spam)
🛠 Implementation Suggestions
1. Content Classification Tagging System (AI-Assisted)
Use lightweight NLP models to classify each piece of content:
ad(advertisement)spam(spam)duplicate(duplicate)sensitive(sensitive)normal(normal)
Tags are automatically analyzed by DVM and recorded as kind=10002 events.
2. Reporting Process Loop Design
User reports → Recorded as kind=10003 → DVM triggers preliminary assessment → If more than 3 reports → Submitted to DAO quick vote → Approved after review → Deduct points
3. Point Change Notification System
All point changes should be notified to the user via Nostr Event (such as kind=10001), and displayed in detail on the client side.
📋 Initial Trust Setup
| User Type | Initial T Score | Source Description |
|---|---|---|
| fiatjaf (Founder) | 10,000 | Creator of the protocol |
| Core Developers | 5,000 - 8,000 | Contributed key code, tools, clients |
| Active Contributors | 1,000 - 4,000 | Long-term active contributors with content/project contributions |
| New Users | 0 | No initial trust, must build up through endorsements from others |
✅ All initial trusted users’ T Scores are certified by DVM or DAO multisig and recorded as
kind=10000events.
✅ Summary (V0.2 Update Highlights)
In this version, we introduced the following key mechanisms:
- Only high-trust users (T Score ≥ 1000) can give points via likes, comments, and shares
- The shared content owner must also be a high-trust user to receive share points
- Encourages high-quality content creation
- Prevents low-reputation users from affecting score fairness
- Strengthened detection and penalty mechanisms for spam content
🧱 NostrTrust 信任积分体系初稿(模型 V0.2)
✨ 版本号:V0.2
📅 初稿日期:2025年5月18日
🧭 目标:构建一个以高质量互动驱动的去中心化信任评分系统,适用于 Nostr 社区成员、开发者与内容创作者。
🔁 新增规则说明
✅ 高分用户发帖可获得积分(激励优质内容)
T Score ≥ 1000 的用户可以发布原创内容来获取积分:
| 行为类型 | 权重 | 条件 |
|---|---|---|
| 发布原创帖子 | +10 分/篇 | 内容长度≥50字,非重复 |
| 被高分用户(T Score ≥ 1000)点赞 | +2 分/次 | 点赞者必须有至少 1000 分 |
| 被高分用户(T Score ≥ 1000)评论 | +3 分/次 | 每条评论计一次,评论者必须有至少 1000 分 |
| 被高分用户(T Score ≥ 1000)转发 | +5 分/次 | 转发者和被转发者都必须有至少 1000 分 |
💡 注:新用户发布的内容不计入积分增长,仅用于被发现和互动。
❌ 垃圾内容或不良行为会被扣分(反滥用机制)
所有用户(包括高分用户)若发布以下类型内容,将触发自动或人工审核,并扣除相应积分:
| 行为类型 | 扣分 | 条件 |
|---|---|---|
| 垃圾广告帖 | -20 分/条 | 包含外部推广链接且无上下文 |
| 重复内容 | -10 分/条 | 同一内容多次发布 |
| 被举报(经核实) | -30 分/次 | 经 DVM 或社区仲裁确认违规 |
| 恶意刷量 | -50 分/次 | 如短时间内大量发布低质内容 |
| 敏感内容 | -50~-100 分 | 包括骚扰、歧视、违法信息等 |
⚠️ 如果用户 T Score 因扣分降至 1000 分以下,其后续发帖不再获得主动积分,直到重新恢复至 1000 分以上。
🧮 示例场景
场景一:高分用户正常发帖
- 用户 A,T Score = 2000
- 发布一篇原创内容 → +10 分
- 被 T Score 为 1200 的用户点赞 → +2 分
- 被 T Score 为 900 的用户评论 → 不得分
- 被 T Score 为 1500 的用户评论 → +3 分
- 被 T Score 为 1000 的用户转发 → +5 分
✅ 总计本次发帖获得:+20 分
场景二:高分用户发垃圾帖
- 用户 B,T Score = 1500
- 发布一条明显广告帖 → 被举报并核实 → -30 分
- 用户 C,T Score = 10000 → 点赞该内容 → 不再加分(因内容已被标记为垃圾)
🛠 实现建议
1. 内容分类标签系统(AI 辅助)
使用轻量级 NLP 模型对每篇内容进行分类打标签:
ad(广告)spam(垃圾)duplicate(重复)sensitive(敏感)normal(正常)
标签由 DVM 自动分析并记录为 kind=10002 的事件。
2. 举报流程闭环设计
用户举报 → 记录到 kind=10003 → DVM 触发初步评估 → 若超过 3 次举报 → 提交 DAO 快速投票 → 审核通过后 → 扣除积分
3. 积分变动通知系统
所有积分变动应通过 Nostr Event 通知用户本人(如 kind=10001),并在客户端展示积分变化详情。
📋 初始信任设定
| 用户类型 | 初始 T Score | 来源说明 |
|---|---|---|
| fiatjaf(创始人) | 10,000 | 协议创建者 |
| 核心开发者 | 5,000 - 8,000 | 贡献关键代码、工具、客户端 |
| 活跃贡献者 | 1,000 - 4,000 | 长期活跃、内容/项目贡献者 |
| 新用户 | 0 | 无初始信任,需通过他人背书建立积分 |
✅ 所有初始可信用户的 T Score 由 DVM 或 DAO 多签认证后写入链上事件(kind=10000)。
✅ 小结(V0.2 更新重点)
在本版本中,我们新增了以下关键机制:
- 只有来自高分用户(T Score ≥ 1000)的点赞、评论和转发才能给接收者增加积分
- 被转发人也必须是高分用户(T Score ≥ 1000)才能获得转发积分
- 继续鼓励优质内容输出
- 防止低质量互动影响积分公平性
- 强化垃圾内容识别与惩罚机制